Psychology 101 Study Guide, Exam #2

Chapter 2: The Biological Mind

I. Imaging techniques of the brain
 a. CT: anatomical
 b. MRI: anatomical
 c. fMRI: functional
 d. SPECT and PET: functional
 e. EEG: functional

II. Anatomical/Structural Scans
 a. Structural Scans: CT
 i. CT = Computed Tomography and CAT = Computed Axial Tomography
 ii. Stroke
 b. Structural Scans: MRI
 i. T1-weighted and T2-weighted
 c. Experience-dependent neural plasticity
 d. Functional Scans: fMRI
 e. Functional Scans: PET
 f. Functional Scans: SPECT
 g. EEG: functional
 i. Epilepsy
 ii. Sleep

III. Asymmetries in the brain
 a. Contralateral representation of sensory & motor functions
 b. Left hemisphere
 i. language
 ii. Broca's area: left frontal
 iii. b. Wernicke's area: left temporal
 c. Right hemisphere
 i. spatial and pattern processing
 ii. cognitive maps
 iii. block design
 iv. face recognition
 d. Corpus callosum
 i. split brain patients

Textbook (Chapter 2):

- Focus on Table 2.1 and final portion of 2-4c on Right-brain Left-brain and Lateralization
IV. States of Consciousness
 a. What is consciousness?
 i. Selective attention
 ii. Voluntary control
 iii. Self-awareness
 b. The seat of consciousness in the brain
 i. Descartes' notion of the Pineal
 ii. Split-brain research
 c. Hemisphere preferences in split-brain
 i. Colors
 ii. Clothing
 iii. Faces
 d. What does split-brain research reveal about consciousness?
 e. Altered States of consciousness
 i. Unified sense of consciousness over time?
 1. Identity
 2. Memory
 3. Uninterrupted stream of consciousness
 ii. Dissociative Identity Disorder (DID)
 1. Perspectives on the Genesis of DID
 a. Post-traumatic Model
 b. Socio-cognitive Model
 c. DSM-5 Diagnostic Criteria
 d. The DID Study
 i. Procedure
 ii. “Was it on list B?”
 iii. Participants
 iv. Results
 2. Cognitive mechanisms in socially constructed DID
 a. Memory-constructive & reconstructive
 i. Encoding
 ii. Storage
 iii. Retrieval
 iv. Evaluation
 b. Mental representation

V. State & mood dependent memory
 a. State dependent
b. Mood dependent

VI. Hypnosis
 a. Relaxed state
 b. Focused awareness
 i. Aspects of hypnosis
 1. Posthypnotic suggestion
 2. Posthypnotic amnesia
 c. Fallacies of hypnosis
 d. Hypnosis characteristics
 i. Cessation of planfullness
 ii. More selective attention
 iii. Rich fantasy
 iv. Reality testing
 v. Suggestibility
 vi. Post-hypnotic amnesia

VII. Sleep and Dreams
 a. Types and stages of sleep
 i. EEG activity
 1. Beta activity
 2. Alpha activity
 3. Delta activity
 ii. Stages of sleep
 1. Stage 1
 2. Stage 2
 3. Stage 3
 4. Stage 4
 5. REM
 iii. Sleep stages
 1. Stage 1: Alpha
 2. Stage 2: Theta waves
 3. Stage 2: Sleep Spindles
 4. Stage 3-4: delta waves
 5. REM: beta waves
 b. Why do we dream?
 i. Wish fulfillment
 ii. Information processing
 iii. Physiological function
 c. When deprived of sleep
 i. REM rebound
 d. Individual differences in dreams
i. Defense mechanism
ii. State-dependent phenomenon

e. Lucid dreaming

Chapter 3: The Perceiving Mind

VIII. Sensation and Perception
a. Sensation
b. Perception
c. Top down vs. bottom up processing
d. Brain as scientist prisoner
 i. Brain senses only neural energy
 ii. Physical energy-transduction
e. Vision
 i. Eye receptors respond to light energy
 ii. Structure of the eye:
 1. Cornea
 2. Iris
 3. Lens
 a. Fixation reflex
 b. Near-sightedness & far-sightedness
 c. Accommodation
 4. Retina
 a. Layers of retina
 i. Light passes through:
 1. Vitreous humor
 2. Ganglion cells and bipolar cells
 3. To photoreceptors
 b. Receptor cells
 i. Rods
 ii. Cones
 1. Three types (unless colorblind)
 2. Blue, green, red
 iii. Blind spot
 c. Fovea
 5. Optic nerve
 iii. Vision-how it works
 1. Light energy causes chemical reaction
 2. Rods and cones send graded potentials
 a. To: bipolar cells and ganglion cells
 b. Ganglion cells carry action potential to CNS
 3. Axons from ganglion cells leave the eye via optic nerve
 a. Thalamus
 b. Primary visual cortex in occipital lobe
iv. Why different layers?
 1. Data reduction
 2. Feature detection

IX. Combining information in the brain
 a. The visual pathways
 i. Main pathway: ganglion cells optic nerve optic chiasm thalamus striate cx
 ii. Other pathways
 b. Receptive fields
 c. Multiple representations of images
 d. Depth Perception
 i. Size cues
 ii. Obstruction of some objects by others
 iii. Binocular disparity
 e. The human organism is designed to detect differences and change:
 i. brightness contrast
 ii. lateral inhibition
 iii. Contrast; microsaccades

X. Audition
 a. Characteristics of sound
 i. frequency determines pitch
 ii. Amplitude determines loudness
 1. Sound measured in decibels (dB’s)
 2. Logarithmic scale
 b. The ear
 i. Outer ear
 ii. Auditory canal
 iii. Eardrum
 iv. Bones of middle ear
 1. hammer
 2. anvil
 3. stirrup
 v. Oval window
 vi. Cochlea
 1. Two membranes
 a. Basilar vibrates
 b. Preferential vibration for frequencies
 2. Three fluid filled sections
 3. Hair cells
 vii. Semicircular (vestibular) canals
 c. So, how do we hear?
 i. Duplex theory of pitch perception
 1. Place
2. Vibration in synchrony with waveform
 ii. Sound localization
 1. Arrival time differences for lower tones
 2. Intensity differences for higher frequencies

Key Terms from the Textbook (Chapter 3):

- absolute threshold,
- audition,
- auditory nerve,
- basilar membrane,
- binocular cue,
- bottom-up processing,
- cochlea,
- cone,
- cornea,
- depth perception,
- difference threshold,
- feature detector,
- fovea,
- gate theory,
- gustation,
- iris,
- lens,
- monocular cue,
- olfaction,
- olfactory bulb,
- olfactory nerve,
- opponent process theory,
- optic nerve,
- optic tracts,
- organ of Corti,
- papillae,
- perception,
- psychophysics,
- pupil,
- retina,
- retinal disparity,
- rod,
- sensation,
- sensory adaptation,
- signal detection,
- somatosensation,
- taste bud,
- top-down processing,
- transduction,
- trichromacy theory,
- vestibular system,
- vision,